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Introduction



Object of study 2/35

• We will deal with the equation

∂u
∂t

(x, t) = κ
+
∫
R
d
a+(x − y)u(y, t)dy

−mu(x, t)−κ−u(x, t)
∫
R
d
a−(x − y)u(y, t)dy,

(∗)

for t > 0, x ∈Rd , d ≥ 1, with an initial condition

u(x,0) = u0(x), 0 ≤ u0 ∈ L∞(Rd).

• Here κ
+,κ−,m > 0 are constants, a+, a− ∈ L1(Rd)∩L∞(Rd)

are probability kernels:

a±(x) ≥ 0 a.e.,
∫
R
d
a±(x)dx = 1.



Derivation 3/35

This equation was derived from a model of mathematical
ecology proposed by [Bolker/Pacala’97; Dieckmann/Law’00].

Let γ = γt ⊂R
d denote a discrete set representing a population

in R
d at a moment of time t ≥ 0.

At a random moment of time, an existing element x ∈ γ may
disappear (die). The rate of this event depends on x itself, but
also it is influenced by the rest of the population.
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m

death rate =m+κ−
∑
y∈γ\x

a−(x−y)

Here m > 0, a− ≥ 0 is integrable.



Derivation II 4/35

Also, at a random moment of time, an existing element x may
send an off-spring to y ∈Rd . The rate of this event depends on
both x and y only.
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y birth rate in an area Λ =
∑
x∈γ

κ
+
∫
Λ
a+(x−y)dy



What we will observe 5/35

Observe in a (small) region Λ

time= 0
initial (random) number of points=NΛ

0

time= t
(random) number of points=NΛ

t

Averaged over (thousands of) simulations:

E

[
NΛ
t

]
=

∫
Λ

k(1)(x, t)dx,

E

[
NΛ
t (NΛ

t − 1)
]
=

∫
Λ

∫
Λ

k(2)(x,y, t)dxdy,

. . .



Reason for scaling 6/35

The difficulty:

∂
∂t
k(1)(x, t) = L

(
k(1)(·, t), k(2)(·, ·, t)

)
(x),

i.e. the equation is not closed.

(Mesoscopic) scaling:

a±(x) 7−→ a±ε (x) := ε
da±(εx).

Note that
∫
R
d a
±
ε (x)dx = 1.

x

a±(x)

a±ε (x)



Mescoscopic scaling 7/35

Let NΛ
t,ε will be the corresponding number of points in Λ at time

t, and

E

[
NΛ
t,ε

]
=

∫
Λ

k
(1)
ε (x, t)dx.

Then
k
(1)
ε (x, t) = u(εx, t) +O(εd),

where u(x, t) solves (∗).



History of derivation 8/35

• Heuristically: [Bolker/Pacala’97] and [Dieckmann/Law’00]
• Rigorously for integrable u: [Fournier/Méléard’04]
• Rigorously for bounded u: [F/Kondratiev/Kutoviy’12],

[F/Kondratiev/Kozitsky/Kutoviy’15]
• Equations for the the next term of the expansion of k(1)ε :

[Ovaskainen/F/Kutoviy/Cornell/Bolker/Kondratiev’14]

Partial cases of the equation (∗):

• The case a+ = a−, κ+ = κ
−, m = 0 was introduced by

[Molisson’72]. ‘Model of simple epidemics’.
• For a+ = a−, κ+ = κ

−, m > 0, the equation was derived by
[Durrett’88] from a ‘crabgrass model’ on Z

d ;
viscosity solution method for the equation:
[Pertham/Souganidis’05].
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• We will always assume that

κ
+ > m (A1)

to avoid that the solution degenerates for large times

• As a result, u ≡ 0 and

u ≡ θ :=
κ
+ −m
κ
− > 0

are stationary solutions to the equation (∗).
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One can rewrite then (∗) in the reaction-diffusion form

∂u
∂t

(x, t) = κ
+
∫
R
d
a+(x − y)

(
u(y, t)−u(x, t)

)
dy

+κ
−u(x, t)

(
θ −

∫
R
d
a−(x − y)u(y, t)dy

)
.

If
∫
R
d xa

+(x)dx = 0 ∈Rd and
∫
R
d |x|2a+(x)dx <∞, then the formal

scaling
κ
+ 7→ δ−2κ+, a±(x) 7→ δ−da±

(
δ−1x

)
leads to the classical Fisher–KPP equation

∂u
∂t

(x, t) = α∆u(x, t) +κ
−u(x, t)

(
θ −u(x, t)

)
,

for some α > 0.
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The equation

∂u
∂t

(x, t) = κ
+
∫
R
d
a+(x − y)

(
u(y, t)−u(x, t)

)
dy

+κ
−u(x, t)

(
θ −u(x, t)

)
was studied in e.g.
[Bouin/Garnier/Henderson/Patout’18],
[Alfaro/Coville’17], [Berestycki/Coville/Vo’16],
[Bonnefon/Coville/Garnier/Roques’14],
[Coville/Dávila/Martı́nez’08,13],
[Aguerrea/Gomez/Trofimchuk’12], [Garnier’11],
[Li/Sun/Wang’10,11], [Yagisita’09],
[Coville/Dupaigne’05, 07], [Weng/Zhao’06],
[Hutson/Martinez/Mischaikow/Vickers’03],
[Schumacher’79, 80].



Comparison principle



Existence and uniqueness of nonnegative solution 12/35

Theorem (F/Tkachov’18 Nonlinearity)

Let 0 ≤ u0 ∈ L∞(Rd). Then for any T > 0 there exists a unique
classical nonnegative solution to (∗), i.e. such that the
mapping R+ 3 t 7→ u(·, t) ∈ L∞(Rd) is continuous on [0,T ] and
continuously differentiable on (0,T ].



Expected feature: Comparison principle 13/35

The classical comparison principle means, in particular, that

0 ≤ u(x,0) ≤ v(x,0)

leads to
0 ≤ u(x, t) ≤ v(x, t),

where v(x, t) is the corresponding solution to (∗) with the initial
condition v(x,0).

A peculiarity of the nonlocal reaction is the following:

Theorem (F/Tkachov’18 Nonlinearity; F/Kondratiev/Tkachov’19

Electr. J. Diff. Eqns.)

Let (A1) hold. The comparison principle for (∗) holds if and
only if, for a.a. x ∈Rd ,

κ
+a+(x) ≥ (κ+ −m)a−(x). (A2)



Corollary of the comparison principle 14/35

Corollary

Let (A1)–(A2) hold. Suppose that 0 ≤ u0(x) ≤ θ for a.a. x ∈Rd .
Then, for all t > 0 and a.a. x ∈Rd ,

0 ≤ u(x, t) ≤ θ.



Travelling waves
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Definition

We will say that a solution u to (∗) is a (monotone) travelling
wave solution with a speed c ∈R and in a direction ξ ∈ Sd−1 if
there exists a decreasing and right-continuous function (the
profile) ψ :R→ [0,θ], such that

u(x, t) = ψ(x · ξ − ct), t ≥ 0, a.a. x ∈Rd ,
ψ(−∞) = θ, ψ(+∞) = 0,



Travelling waves: a sketch 16/35

Known results: [Weng/Zhao’06]: d = 1, symmetric a+ = a− which
decays faster than any exponential function; [Yu/Yuan’13]: the
same but for different symmetric a+ and a−.



Expected but new features about travelling waves 17/35

We assume that, for a fixed direction ξ ∈ Sd−1,

aξ(ν) :=
∫
R
d
a+(x)eνx·ξ dx <∞ for some ν = ν(ξ) > 0,

‖u0‖λ,ξ := esssup
x∈Rd

u0(x)e
λx·ξ <∞ for all λ > 0.

(A3)

Theorem (F/Kondratiev/Tkachov’19 Electr. J. Diff. Eqs. & J. Math.

Anal. Appl.)

Let (A1)–(A3) hold. Then there exists

cξ =min
µ>0

κaξ(µ)−m
µ

∈R,

such that, for any c ≥ cξ , there exists a unique (up to shifts)
monotone travelling wave, and for c < cξ such waves do not
exist. In the former case the profile is continuous (and even
smooth unless c = 0) and strictly monotone.



Peculiarity of nonlocal diffusion 18/35

Theorem (F/Kondratiev/Tkachov’19 J. Math. Anal. Appl.)

Let (A1)–(A3) hold. For any c ≥ cξ , there exists σc ∈ (0,∞) such
that the asymptotic of the corresponding monotone profile ψc
at +∞ is given by

ψc(s) ∼D sj e−σcs, s→∞.

Here j = 0 if either c > cξ or c = cξ and

σ̂ := sup
λ>0
{a(λ) <∞} <∞,∫

R

(1 + |x|)a+(x)eσ̂x dx <∞,

m ≤ m̂ := κ
+
∫
R

(1− σ̂x)a+(x)eσ̂x dx.

Otherwise j = 1.
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Example

Let d = 1. Consider

a+(x) :=
αe−µ|x|

1+ |x|q
, x ∈R, q ≥ 0, µ > 0,

where α > 0 is a normalizing constant. Then σ̂ = µ and, for
q > 2, there exist µ∗ > 0 and m∗ ∈ (0,κ+), such that j = 0 for
c = cξ provided that µ ∈ (0,µ∗] and m ∈ (0,m∗].

The technique is based on a Tauberian-Ikehara-type theorem,
see [F/Tkachov’ 19 Comptes Rendus Mathématique].



Front propagation
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Theorem (F/Kondratiev/Tkachov’19, Applicable Analysis (accepted))

Let (A1)–(A3). Let µξ be such that cξ =
κaξ (µξ )−m

µξ
. Then

0 ≤ u(x, t) ≤ ‖u0‖µξ ,ξ e
µξ (cξ t−x·ξ).

Moreover, consider

Υ :=
{
x ∈Rd

∣∣∣ x · ξ ≤ cξ , ξ ∈ Sd−1}.
Then, for any open T ⊃ Υ , there exist ν,C > 0, such that

0 < u(x) ≤ C e−νt , x ∈ tT c, t > 0.

Finally, if (A3) holds for all ξ ∈ Sd−1, then, for any compact
C ⊂ int(Υ ),

lim
t→∞

essinf
x∈tC

u(x, t) = θ.



Linear propagation: a sketch 21/35

Υ

κm

Oξ

O

cξξ

ξ

front propagation
in a direction ξ

front propagation

For the case κ
+ = κ

−, a+ = a− see also
[Perthame/Souganidis’05].
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• Consider the case d = 1.

• We will distinguish two cases for the initial condition
u0 :R→R+:

lim
x→±∞

u0(x) = 0, (C1)

lim
x→∞

u0(x) = 0, inf
x≤−ρ

u0(x) > 0 (C2)

for some ρ ≥ 0.

• Let r, l :R+→R+ be increasing to∞ functions, such that
the following holds.



Front propagation: description for d = 1, case (C1) 23/35

Case (C1) For each ε ∈ (0,1),

lim
t→∞

essinf
[−l(t−εt),r(t−εt)]

u(x, t) = θ.

lim
t→∞

esssup
(−∞,−l(t+εt)]∪[r(t+εt),∞)

u(x, t) = 0.

transition zone

x

θ

u = u(t,x)

−l(t + εt) −l(t − εt) r(t − εt) r(t + εt)



Front propagation: description for d = 1, case (C2) 24/35

Case (C2) For each ε ∈ (0,1),

lim
t→∞

essinf
(−∞,r(t−εt)]

u(x, t) = θ.

lim
t→∞

esssup
[r(t+εt),∞)

u(x, t) = 0.

transition zone

x

θ

u = u(t,x)

r(t − εt) r(t + εt)



Speed of propagation 25/35

• Finite speed of propagation (to the right):

r(t) = cξ=1t,

l(t) = cξ=−1t,
note that Υ = [−cξ=−1, cξ=1].

• Acceleration (to the right):

lim
t→∞

r(t)
t

=∞.



Acceleration for d = 1 26/35

Theorem (Informal. Full version: F/Tkachov’19 Applicable Analysis)

• Acceleration takes place if either a or u0 (or both) have
heavy tails.

• For the case (C1), r(t) is described by the heaviest right tail
(slowest decaying at +∞) of a+ and u0 .

• For the case (C1), l(t) is described (independently) by the
heaviest left tail (slowest decaying at −∞) of a+ and u0.

• For the case (C2), to describe r(t), we have to consider∫∞
x
a+ and u0 instead.



Examples of r(t) 27/35

Let b(x) denote a function with the heaviest tail as described
above. Consider the explicit form of r(t).

b(x) = (logx)µx−q, r(t) = exp
(β
q
t
)
;

b(x) = (logx)µxν exp
(
−p(logx)q

)
, r(t) = exp

((β
p
t
) 1
q

)
;

b(x) = (logx)µxν exp
(
−xα

)
, r(t) = (βt)

1
α ;

b(x) = (logx)µxν exp
(
− x
(logx)q

)
, r(t) ∼ βt(log t)q, t→∞.

Here µ,ν ∈R, q > 1, α ∈ (0,1), p > 0.
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Let n , 0, r > 1, δ > 0, α ∈ (0,1). Suppose that

for x > r


1

(1+ x)n
exp(−xα) ≤ a+(x) ≤ (1 + x)n exp(−xα),

u0(x) ≤ (1 + x)n exp(−xα),
,

for x < −r


1

(log(−x))n
1

(1− x)1+δ
≤ u0(x) ≤ (log(−x))n 1

(1− x)1+δ
,

a+(x) ≤ (log(−x))n 1
(1−x)1+δ ,

Then

lim
t→∞

essinf
Λ(t−εt)

u(x, t) = θ, lim
t→∞

esssup
R\Λ(t+εt)

u(x, t) = 0,

where
Λ(t) =

[
−exp

( βt

1+ δ

)
, (βt)

1
α

]
.



Technique and references 29/35

Our technique is based on properties of n-fold convolutions for
heavy-tailed functions, see [F/Tkachov’18 Adv.Appl.Prob.]

Other known results:

• For d > 1, both local and nonlocal reactions
[F/Kondratiev/Tkachov’18, J. Elliptic & Parabolic

Eqns. (accepted)].

• For d = 1 and local reaction:
• [Garnier’11]: compactly supported u0, symmetric a+,

convergence to 0 was shown on {|x| ≥ r(γt)} with an
unknown γ > 1 (instead of γ = 1+ ε for an arbitrary ε);

• [Bouin/Garnier/Henderson/Patout’18]: symmetric and
heavy-tailed a ≥ cu0.



Different acceleration in (C1) and (C2) 30/35

• Let u0(x) decays faster at +∞ than a+(x) which has a
regularly heavy tail at +∞. Then the propagation to the
right will be characterized by a+(x) if u0(x) tends to 0 at
−∞ and by

∫∞
x
a+(y)dy if u0(x) is separated from 0 at −∞.

• If

loga+(x) = o
(
log

∫ ∞
x
a+(y)dy)

)
, x→∞,

then we will get different r(t) in (C1) and (C2).

• This is the case, e.g., for

a+(x) = x−q and a+(x) = exp
(
−p(logx)q

)
.



Similar results for fractional Laplacian 31/35

• Similar results were obtained for the equation with
fractional Laplacian instead of κa+ ∗u −κu, i.e., informally,
for

a+(x) =
1

|x|d+2δ
, δ ∈ (0,1),

see [Cabré/Roquejoffre’13], [Felmer/Yangari’13],
[Méléard/Mirrahimi’15].

• However, their approaches don’t yield a result for

a+(x) =
1

1+ |x|d+2δ
, δ ∈ (0,1).
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Univ. État Moscou Sér. Inter. A, 1:1–26, 1937.



References iii 34/35
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