DouBLy NONLOCAL FiIsHER—KPP EQuUATION:
FEATURES AND PECULIARITIES

Dmitri Finkelshtein

Swansea University, UK

Equadiff 2019

Leiden, 11th July 2019



INTRODUCTION



OBJECT OF STUDY 2/35

* We will deal with the equation

Tetnn = [ arx-phuty,dy
R4

(*)
—mu(x,t)— % u(x, t) j a (x—y)u(y, t)dy,
R4
for t>0,x € R?, d > 1, with an initial condition
u(x,0) = up(x), 0 < uy e L2(R%).

e Here x*,x~,m> 0 are constants, a*,a~ € L} (R%) N L (IRY)

are probability kernels:

a*(x)>0 a.e., J a*(x)dx =1.
R4



DERIVATION 3/35

This equation was derived from a model of mathematical
ecology proposed by [Bolker/Pacala’97; Dieckmann/Law’00].

Lety =y, C R? denote a discrete set representing a population

in R? at a moment of time ¢ > 0.

At a random moment of time, an existing element x € y may
disappear (die). The rate of this event depends on x itself, but
also it is influenced by the rest of the population.

N
(x— }H death rate = m+x~ a (x-y)
L . 2 @y

yey\x



DEerivATION I

Also, at a random moment of time, an existing element x may
send an off-springto y € R?. The rate of this event depends on
both x and v only.

22

5]

x1 birth rate in an area A = Z M+j at(x-p)dy
x€y A

X4

L5



WHAT WE WILL OBSERVE 5/35

Observe in a (small) region A

time=0 time=t¢

initial (random) number of points = Ng‘ (random) number of points = N/*

Averaged over (thousands of) simulations:
E[N/] :f KD (x, 1) dx,
A

IE[NtA(NtA - 1)] = L L k) (x,y,t)dxdy,



REASON FOR SCALING 6/35

The difficulty:

J
Sk, 1) = £(k D, 1),k 1) (),

i.e. the equation is not closed.

(Mesoscopic) scaling:
a*(x) — ax(x) := e"a*(ex).

Note that jIRd az(x)dx=1.




MESCOSCOPIC SCALING 7/35

Let Nt{\g will be the corresponding number of points in A at time

t, and

E[NA]= Lkil)(x,t)dx.

Then
kil)(x, t) = u(ex, t) + O(e%),

where u(x,t) solves ().



HISTORY OF DERIVATION 8/35

* Heuristically: [Bolker/Pacala’97] and [Dieckmann/Law’00]

* Rigorously for integrable u: [Fournier/Méléard’ 04 ]

* Rigorously for bounded u: [F/Kondratiev/Kutoviy’12],
[F/Kondratiev/Kozitsky/Kutoviy’15]

* Equations for the the next term of the expansion of kél):

[Ovaskainen/F/Kutoviy/Cornell/Bolker/Kondratiev’ 14]
Partial cases of the equation (x):

e Thecasea™ =a~, x* = «~, m = 0 was introduced by
[Molisson’72]. ‘Model of simple epidemics’.

e Fora® =a-, u" =x~, m>0, the equation was derived by
[Durrett’88] from a ‘crabgrass model” on 74
viscosity solution method for the equation:
[Pertham/Souganidis’05].



BAsic ASSUMPTION o/35

* We will always assume that

+

n >m (A1)

to avoid that the solution degenerates for large times

e Asaresult,u =0 and

are stationary solutions to the equation ().



REACTION-DIFFUSION FORM 10/35

One can rewrite then () in the reaction-diffusion form

s I d

=n fwa u(y,t) - u(x,1))dy

+%u(x,t)(9—f a(x—y)u(y,t)dy).
R4

If LRd xat(x)dx =0 e R? and IIRd |x|>a* (x)dx < oo, then the formal
scaling

w870, at(x) e 67a%(671x)
leads to the classical Fisher—KPP equation

u
5(

for some a > 0.

x,t) = alAu(x, t)+ 2 u(x, t)(@ —u(x, t)),



NONLOCAL DIFFUSION ONLY 11/35

The equation

Tt = [ ax-y)(utyn) - u(nn)dy

R

+%7u(x,t)(9—u(x,t))
was studied in e.g.
[Bouin/Gul’nicr/chdcrson/Paloul 18],
[Alfaro/Coville’17], [Berestycki/Coville/Vo’'16],
[Bonne[on/Covi lle/Garnier/Roques’14],
[Covi Ile/Davila/Martinez’08,13],
[Aguerrea/Gomez/Trofimchuk’12], [Garnier’11],
[Li/Sun/Wang’10,11], [Yagisita’09],
[Coville/Dupaigne’05, 07], [Weng/Zhao'06],
[Hutson/Martinez/Mischaikow/Vickers'03],
[S(:humu(:her'79, 80].



COMPARISON PRINCIPLE




EXISTENCE AND UNIQUENESS OF NONNEGATIVE SOLUTION 12/35

Theorem ( )

Let 0 < uy € L®(IR?). Then for any T > 0 there exists a unique
classical nonnegative solution to (), i.e. such that the
mapping R, 3 t — u(-,t) € L°(IR%) is continuous on [0, T] and
continuously differentiable on (0, T].



ExPECTED FEATURE: COMPARISON PRINCIPLE 13/35

The classical comparison principle means, in particular, that
0<u(x,0)<v(x,0)
leads to
0<u(xt)<v(xt),
where v(x,t) is the corresponding solution to () with the initial
condition v(x, 0).
A peculiarity of the nonlocal reaction is the following:

Theorem (

)

Let (A1) hold. The comparison principle for () holds if and
only if, for a.a. x € IRd,

xrat(x) > (xF - m)a(x). (A2)



COROLLARY OF THE COMPARISON PRINCIPLE 14/35

Corollary

Let (A1)=(A2) hold. Suppose that 0 < ug(x) < 6 for a.a. x € R%.
Then, for allt >0 and a.a. x € IRd,

0<u(xt)<0.



TRAVELLING WAVES




TRAVELLING WAVES: THE DEFINITION 15/35

Definition

We will say that a solution u to (%) is a (monotone) travelling
wave solution with a speed c € R and in a direction & € Sd-1if
there exists a decreasing and right-continuous function (the
profile) ¢ : R — [0, 0], such that

u(x,t)=1p(x-&—ct), t>0,aa xeRY,
Pl-c0)=0,  P(+e0) =0,



TRAVELLING WAVES: A SKETCH 16/35

— u{xt)=gx-ct)

u(x, 2t )= (x-2ct}=u(x—ct t)
— Ux, )= (x-3ct)=u(x-2ct t)
— ux4t)=g(x-4ct)=u(x-3ct t)

Known results: [Weng/Zhao’06]: d = 1, symmetric a* = a~ which
decays faster than any exponential function; [Yu/Yuan’ 13]: the
same but for different symmetrica™ anda™.



EXPECTED BUT NEW FEATURES ABOUT TRAVELLING WAVES 17/35

We assume that, for a fixed direction & € Sd’l,

ag(v):= j ) at(x)e"*¢dx<oco  forsome v =v(&)>0,
R

(A3)
lluplly, & := esssup uy(x)e* ¢ <o forall 1> 0.
xeR4

Theorem (

)
Let (A1)—(A3) hold. Then there exists
Aa —m
Cg = min ‘E(L eR,
#>0 g

such that, for any ¢ > c¢, there exists a unique (up to shifts)
monotone travelling wave, and for ¢ < cg such waves do not
exist. In the former case the profile is continuous (and even
smooth unless c = 0) and strictlv monotone.



PECULIARITY OF NONLOCAL DIFFUSION 18/35

Theorem ( )

Let (A1)-(A3) hold. For any ¢ > c¢, there exists o, € (0,00) such
that the asymptotic of the corresponding monotone profile 1,
at +oo is given by

e(s) ~Dsl e, s — co.

Here j = 0 if either ¢ > c¢ or ¢ = c¢g and

(1 +|x])a* (x)e”* dx < oo,

3 5o

Otherwise j = 1.



EXAMPLE AND TECHNIQUE 19/35

Example
Let d = 1. Consider

ae_,ulxl

=, elR,g>0, u>0,
S BT xeRg=5p

where a > 0 is a normalizing constant. Then & = p and, for
g > 2, there exist p, > 0 and m, € (0,x™), such that j = 0 for
¢ = cg provided that p € (0, u.] and m € (0, m,].

The technique is based on a Tauberian-lkehara-type theorem,

see



FRONT PROPAGATION




LINEAR PROPAGATION 20/35

Theorem ( )

Let (A1)-(A3). Let ug be such that cg = m‘f(”jJ Then

0 < u(x,t) < luglly & s =>4,
Moreover, consider
T::{xele |x-€ <cg & eSd‘l}.
Then, for any open 7 O Y, there exist v,C > 0, such that
0<u(x)<Ce™, xetT t>0.

Finally, if (A3) holds for all & € S%~1, then, for any compact
% cint(Y),

lim essinfu(x,t) = 6.
t—oo xet?



LINEAR PROPAGATION: A SKETCH 21/35

front propagation
in a direction &

/ Y

\ ® 111

~ e
N

front propagation

O

For the case #x" =x~,at =a~ see also
[Perthame/Souganidis’05].



FRONT PROPAGATION: DESCRIPTION FOR d = 1 22/35

e Consider the cased =1.

* We will distinguish two cases for the initial condition

upg:R—1R,:
lim ug(x) =0, (C1)
X—*00
lim ug(x) =0, inf uy(x)>0 (C2)
X—00 X<—p

for some p > 0.

e Letr,l:R, — R, beincreasing to oo functions, such that

the following holds.



23/35

FRONT PROPAGATION: DESCRIPTION FOR d = 1, case (C1)

Case (C1) Foreache€(0,1),

lim  essinf  u(x,t)=06.
t—oo [-(t—et),r(t—¢t)]

lim esssup u(x,t) =0.
oo,—I(t+et)|U[r(t+et),00)

t—o0
(-

—I(t +¢€t) —I(t —et) r(t—et
transition zone



FRONT PROPAGATION: DESCRIPTION FOR d = 1, case (C2) 24135

Case (C2) Foreache€(0,1),

lim essinf u(x,t)=0.
t—00 (—co,r(t—¢t)]

lim esssup u(x,t)=0.
t_)oo[r(t+et),oo)

1
)
1
1
1
1
1
|
]
e
r(t+et)

transition zone



SPEED OF PROPAGATION 25/35

* Finite speed of propagation (to the right):

r(t) =cg=1t,
()= ce=t note that Y = [—cg—_,cc-1 ]
I[(t) =cg=_1t,

* Acceleration (to the right):

lim —= = oo.
t—o0

r(t)
t



ACCELERATION FOR d = 1 26/35

Theorem (Informal. Full version: )
* Acceleration takes place if either a or uy (or both) have
heavy tails.

* For the case (C1), r(t) is described by the heaviest right tail
(slowest decaying at +oc0) of a* and u .

* for the case (C1), I(t) is described (independently) by the
heaviest left tail (slowest decaying at —oo) of a* and uy.

* For the case (C2), to describe r(t), we have to consider
LOO at and ug instead.



ExXAMPLES OF 7(t)

Let b(x) denote a function with the heaviest tail as described
above. Consider the explicit form of r(t).

b(x) = (log x)#x ™1, - exp(gt),

b(x) = (log x)/'x” exp(p(log )7, - exp( gt) );
b(x) = (logx)'x” exp(—x), r(t) = (Bt)s;

b(x) = (log 0" exp( -~ ). (t) ~ Bt(log 1)1, £ > .

Here p,v€R,qg>1,a€(0,1),p>0.



ExAMPLE 28/35

Lletn=0,r>1,0>0,a €(0,1). Suppose that
1

forx>r (1+x)"
up(x) < (1+x)"exp(—x%),

exp(—x%) <a*(x) < (1 +x)"exp(—x%),

: s < () < (log(—x)) —
forx < -—r (log(—x))” (1 _x)1+6 a - & (1 —X)“"S’
at(x) < (log(—x))”m,
Then
lim essinfu(x,t) =0, lim esssup u(x,t)=0,
t—o0 A(t—et) t—o00 R\A(t+et)
where

t 1
= [—exp(lﬁj),(ﬁt)a].



TECHNIQUE AND REFERENCES 29/35

Our technique is based on properties of n-fold convolutions for

heavy-tailed functions, see [/ Tkachov’ 18 Adv.Appl.Prob. |

Other known results:

e Ford > 1, both local and nonlocal reactions
[F/Kondratiev/Tkachov'18, J. Elliptic & Parabolic
Eqns. (accepted)].

* For d =1 and local reaction:

e [Garnier’11]: compactly supported 1, symmetric a*,
convergence to 0 was shown on {|x| > r(yt)} with an
unknown y > 1 (instead of ¥ = 1 + ¢ for an arbitrary ¢);

* [Bouin/Garnier/Henderson/Patout’ 18]: symmetric and

heavy-tailed a > cuy.



DIFFERENT ACCELERATION IN (C1) AND (C2)

* Let uy(x) decays faster at +oo than a*(x) which has a
regularly heavy tail at +c0. Then the propagation to the
right will be characterized by a*(x) if uy(x) tends to 0 at
—oo and by fxoo a*(y)dy if uy(x) is separated from 0 at —co.

o If
loga®(x) = o(logf a*(y)dy)), X — 00,

then we will get different r(t) in (C1) and (C2).

e This is the case, e.g., for

at(x)=x1 and a*(x)= exp(—p(logx)q).



SIMILAR RESULTS FOR FRACTIONAL LAPLACIAN 31/35

e Similar results were obtained for the equation with
fractional Laplacian instead of xa™ *u — xu, i.e., informally,

for
1

a+(x)=W, 56(0,1),

see [Cabré/Roquejoffre’ 13], [Felmer/Yangari’13],
[Mé1éard/Mirrahimi’ 15].
e However, their approaches don'’t yield a result for

B 1
T 1+ |x|d+26 ’

a*(x) 6€(0,1).
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