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Introduction



Tail functions

• For a probability distribution (probability measure) F on R, let

F(s) := F
(
(s,∞)

)
, s ∈R

be its tail function.

• For probability distributions F1, F2 on R with the corresponding
tail functions F1,F2, the convolution F1 ∗F2 has the tail function

F1 ∗F2(s) =
∫
R

F1(s − τ)F2(dτ) =
∫
R

F2(s − τ)F1(dτ).

• Recall that X1 ∼ F1, X2 ∼ F2 implies X1 +X2 ∼ F1 ∗F2.

• Let F be concentrated on R+ := [0,∞) and F(s) > 0, s ∈R, then

liminf
s→∞

F ∗F(s)
F(s)

≥ 2.

Chistyakov’1964
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Sub-exponential distributions

• Let, additionally, F be heavy-tailed, i.e.∫
R

eλsF(ds) =∞ for all λ > 0,

then the equality holds:

liminf
s→∞

F ∗F(s)
F(s)

= 2.

Foss/Korshunov’2007

• Definition. A distribution F concentrated on R+ is said to be
sub-exponential, if

lim
s→∞

F ∗F(s)
F(s)

= 2.

Chistyakov’1964; Hover/Ney/Wainger’1969; Athreya/Ney’1972
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Sub-exponential distributions: properties

Chistyakov’1964 has also shown that:

• Any sub-exponential distribution is long-tailed, i.e.

lim
s→∞

F(s+ t)

F(s)
= 1 for each t > 0.

(Moreover, each long-tailed distribution is heavy-tailed.)

• If F is a sub-exponential distribution concentrated on R+, then

lim
s→∞

F∗n(s)

F(s)
= n,

where F∗n := F ∗ . . . ∗F (n− 1 times).
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Sub-exponential distributions: properties

• If X1 ≥ 0, . . . ,Xn ≥ 0 are i.i.d.r.v. with a sub-exponential
distribution, then

P

(
X1 + . . .+Xn > s

)
∼ P

(
max{X1, . . . ,Xn} > s

)
, s→∞.

• Were used by Chistyakov’1964 and later by Athreya/Ney’1972

for the study of the renewal equation and branching processes.
For this (and later for risk theory) one needs ‘more uniform’ in
n ∈N bound instead of

F∗n(s) ≤ (n+ δ)F(s), s > sδ(n).
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Kesten’s bound for distributions on R+

• Let F be a sub-exponential distribution concentrated on R+,
then, for each δ > 0, there exists cδ > 0, such that

F∗n(s) ≤ cδ(1 + δ)nF(s), s ≥ 0, n ∈N.

• History: Chistyakov’1964: under additional assumptions,
general case: Athreya/Ney’1972 (the proof was proposed by
Kesten). We follow the terminology by
Foss/Korshunov/Zachary’2013.

• The ‘profit’: uniform convergence of series
∞∑
n=1

λnF∗n.

Were used in branching age dependent processes, random
walks, queue theory, risk theory and ruin probabilities,
compound Poisson processes, and the study of infinitely divisible
laws.
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Sub-exponential densities on R+

• If distributions F1,F2 on R have probability densities
b1 ≥ 0,b2 ≥ 0, with

∫
R
b1(s)ds =

∫
R
b2(s)ds = 1, then F1 ∗F2 has the

density

(b1 ∗ b2)(s) :=
∫
R

b1(s − t)b2(t)dt, s ∈R.

• The density b of a sub-exponential distribution F concentrated
on R+ (i.e. b(s) = 0 for s < 0) is said to be sub-exponential on R+ if
b is long-tailed, i.e.

lim
s→∞

b(s+ t)
b(s)

= 1 for each t > 0,

and

lim
s→∞

(b ∗ b)(s)
b(s)

= 2.

• Note that any long-tailed function b satisfies

lim
s→∞

eλsb(s) =∞ for each λ > 0.
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Sub-exponential densities on R+: properties

• Let b be a sub-exponential density on R+ (recall that b(s) = 0 for
s < 0). Then

lim
s→∞

b∗n(s)
b(s)

= n, n ∈N

where b∗n := b ∗ . . . ∗ b (n− 1 times).

• Moreover, the following Kesten’s bound hold: for any δ > 0, there
exist sδ > 0 and cδ > 0, such that

b∗n(s) ≤ cδ(1 + δ)nb(s), s ≥ sδ, n ∈N.

Klüppelberg’1989; Asmussen/Foss/Korshunov’2003

• Note that if b is a sub-exponential density on R+, then F is a
sub-exponential distribution on R+, but the converse result is
not, in general, true.
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Sub-exponential densities on R+: examples

The following functions, being normalized on R+, become
sub-exponential densities of

• Student’s t-distribution.

b(s) =
1(

1+ s2
2p−1

)p , p >
1
2
.

p = 1 corresponds to the Cauchy distribution

• The Lévy distribution

b(s) = (s −µ)−
3
2 exp

(
− c
s −µ

)
, c > 0, µ ∈R.

• The Burr IV distribution.

b(s) =
sc−1

(1 + sc)k+1
, c > 0, k > 0.

c = 1 is related to the Pareto distribution.
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Sub-exponential densities on R+: examples

The following functions, being normalized on R+, become
sub-exponential densities of

• The log-normal distribution.

b(s) =
1
s
exp

(
−
(logs −µ)2

2γ2

)
, γ > 0, µ ∈R.

• The Weibull distribution.

b(s) =
exp(−sα)
s1−α

, α ∈ (0,1).

• ‘Almost exponential’ distribution.

b(s) = exp
(
− s
(logs)α

)
, α > 0.
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Sub-exponential densities and Kesten’s
bound on R



Sub-exponential distributions on the whole R

• It is easy to construct a distribution supported on [−r,∞), r > 0,
such that F ∗F(s) ∼ 2F(s), s→∞, but F is light-tailed.

• Therefore, a general distribution on R (with right-unbounded
support) is said to be sub-exponential if F ∗F(s) ∼ 2F(s), s→∞
and F is long-tailed that is, recall,

lim
s→∞

F(s+ t)

F(s)
= 1 for each t > 0.

• This appears equivalent to require that the distribution
F+(·) := F(· ∩R+), after normalization, must be sub-exponential
on R+.

• Then F∗n(s) ∼ nF(s), s→∞ for any n ≥ 2 and Kesten’s bound
remains unchanged.

e.g. Sgibnev’1982,’1990; Foss/Korshunov/Zachary’2013

• For more deep properties and differences with the R+ case see
Watanabe’2008.
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Sub-exponential densities on the whole R: definition

• We will say that a density b is (right-side) sub-exponential on R if
b is (right-side) long-tailed, i.e.

lim
s→∞

b(s+ t)
b(s)

= 1 for each t > 0,

and

(b ∗ b)(s) =
∫
R

b(s − t)b(t)dt ∼ 2b(s), s→∞.

• Asmussen/Foss/Korshunov’2003 have shown that if a density b
on R is long-tailed and, being restricted and normalized on R+,
becomes a sub-exponential density on R+, and if, additionally,
the condition

b(s+ τ) ≤ Kb(s), s > ρ, τ > 0 (1)

holds for some K > 0 and ρ > 0, then b is a sub-exponential
density on R.

• In particular, if b is tail-decreasing, i.e. decays to 0 on [ρ,∞) for
some ρ > 0, then (1) holds.

12/28



Sub-exponential densities on the whole R: definition

• We will say that a density b is (right-side) sub-exponential on R if
b is (right-side) long-tailed, i.e.

lim
s→∞

b(s+ t)
b(s)

= 1 for each t > 0,

and

(b ∗ b)(s) =
∫
R

b(s − t)b(t)dt ∼ 2b(s), s→∞.

• Asmussen/Foss/Korshunov’2003 have shown that if a density b
on R is long-tailed and, being restricted and normalized on R+,
becomes a sub-exponential density on R+, and if, additionally,
the condition

b(s+ τ) ≤ Kb(s), s > ρ, τ > 0 (1)

holds for some K > 0 and ρ > 0, then b is a sub-exponential
density on R.

• In particular, if b is tail-decreasing, i.e. decays to 0 on [ρ,∞) for
some ρ > 0, then (1) holds.

12/28



Sub-exponential densities on the whole R: definition

• We will say that a density b is (right-side) sub-exponential on R if
b is (right-side) long-tailed, i.e.

lim
s→∞

b(s+ t)
b(s)

= 1 for each t > 0,

and

(b ∗ b)(s) =
∫
R

b(s − t)b(t)dt ∼ 2b(s), s→∞.

• Asmussen/Foss/Korshunov’2003 have shown that if a density b
on R is long-tailed and, being restricted and normalized on R+,
becomes a sub-exponential density on R+, and if, additionally,
the condition

b(s+ τ) ≤ Kb(s), s > ρ, τ > 0 (1)

holds for some K > 0 and ρ > 0, then b is a sub-exponential
density on R.

• In particular, if b is tail-decreasing, i.e. decays to 0 on [ρ,∞) for
some ρ > 0, then (1) holds.

12/28



Sub-exponential densities on the whole R: definition

• We will say that a density b is (right-side) sub-exponential on R if
b is (right-side) long-tailed, i.e.

lim
s→∞

b(s+ t)
b(s)

= 1 for each t > 0,

and

(b ∗ b)(s) =
∫
R

b(s − t)b(t)dt ∼ 2b(s), s→∞.

• Asmussen/Foss/Korshunov’2003 have shown that if a density b
on R is long-tailed and, being restricted and normalized on R+,
becomes a sub-exponential density on R+, and if, additionally,
the condition

b(s+ τ) ≤ Kb(s), s > ρ, τ > 0 (1)

holds for some K > 0 and ρ > 0, then b is a sub-exponential
density on R.

• In particular, if b is tail-decreasing, i.e. decays to 0 on [ρ,∞) for
some ρ > 0, then (1) holds.

12/28



Sub-exponential densities on the whole R: result

Definition

For a (probability) density b on R, let b+ denote its normalized
restriction to R+.

Theorem 1

Let b be a density on R, such that b+ is a sub-exponential density on
R+, and let (1) holds (for example, let b be tail-decreasing). Then

b∗n(s) ∼ nb(s), s→∞, n ≥ 2.
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Sub-exponential densities on the whole R: background

The proof follows from

Proposition 1

Let b :R→R+ satisfy the conditions above. Let b1,b2 ∈ L1(R→R+)
and there exist constants c1, c2 ≥ 0, such that

lim
s→∞

bj (s)

b(s)
= cj , j = 1,2.

Then

lim
s→∞

(b1 ∗ b2)(s)
b(s)

= c1

∫
R

b2(τ)dτ + c2

∫
R

b1(τ)dτ.

Then, in particular, b1 = b, b2 = o(b) imply b ∗ b2 ∼ b.
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Sub-exponential densities on the whole R: Kesten’s bound

Theorem 2

Let b be a bounded density on R, such that b+ is a sub-exponential
density on R+, and let (1) holds (e.g., let b be tail-decreasing).
Then, for any δ ∈ (0,1), there exist Cδ > 0 and sδ > 0, such that

b∗n(s) ≤ Cδ(1 + δ)nb(s), s > sδ, n ∈N.
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Application to the non-local heat equation on R

Consider the non-local heat equation on R

∂
∂t
u(x, t) = κ

∫
R

a(x − y)
(
u(y, t)−u(x, t)

)
dy, x ∈R,

where κ > 0 and 0 ≤ a ∈ L1(R)∩L∞(R) with
∫
R
a(x)dx = 1. Let

u(x,0) = u0(x), x ∈R, where 0 ≤ u0 ∈ L∞(R).

The unique solution in L∞(R) is

u(x, t) = e−κtu0(x) + e
−κt

(
φ
κ
(t) ∗u0

)
(x),

where

φ
κ
(x, t) :=

∞∑
n=1

κ
ntn

n!
a∗n(x), x ∈R, t ≥ 0.

If a satisfies the conditions of Theorem 2, then the series above
converges uniformly on finite time intervals for each x > sδ, and
therefore, by Theorem 1,

φ
κ
(x, t) ∼ κteκta(x), x→∞, t > 0.
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Sub-exponential densities on the whole R: technical tools

• h-insensitive property: proposed by
Asmussen/Foss/Korshunov’2003.

• If b is long-tailed, then the convergence b(s+t)
b(s) → 1, s→∞ is

locally uniform in t: for each h > 0,

sup
|t|≤h

∣∣∣∣∣b(s+ t)b(s)
− 1

∣∣∣∣∣ = 0.

• For a tail-decreasing b, it is evident; the general case is based on
a classical result for the slowly regular function b(logs).

• Definition. b is said to be h-insensitive w.r.t. an increasing
function h, such that 0 < h(s) < s

2 and h(s)→∞, s→∞, if

sup
|t|≤h(s)

∣∣∣∣∣b(s+ t)b(s)
− 1

∣∣∣∣∣ = 0. (2)

• For each long-tailed b such h does exist (not unique, of course).
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Sub-exponential densities: sufficient conditions

• Asmussen/Foss/Korshunov’2003 have shown that if b is
long-tailed and tail-log-convex, i.e. logb is convex on (ρ,∞) for
some ρ > 0, and the function h above is such that

lim
s→∞

sb
(
h(s)

)
= 0, (3)

then b+ is sub-exponential on R+.

• Hence, if, additionally, (1) holds (e.g. if b is tail-decreasing), then,
by Theorem 1, b is sub-exponential on R and, by Theorem 2,
Kesten’s bound holds.

• The following simple fact was not observed before: if b is
tail-decreasing, then (2) is just equivalent to

lim
s→∞

b
(
s ± h(s)

)
b(s)

= 1. (4)

• We denote by S0 the class of ‘regular’ densities which are
tail-decreasing, tail-log-convex, and there exists h as the above
(i.e. s

2 > h(s)↗∞), such that (3)–(4) hold.
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Sub-class of regular densities on R+

• For any b ∈ S0, both Theorems 1 and 2 hold. It is natural to find
transformations which keep functions in S0 or, at least, in some
its subclasses.

• Consider a sub-class Sd , d ≥ 1 of the class S0 of regular
densities b on R, such that b ∈ L1(R+, s

d−1 ds), and, for some
δ = δ(b) > 0 and h as above,

lim
s→∞

s1+δb
(
h(s)

)
= 0. (5)
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Reason 1 for the sub-class

Definition. The densities b and c, positive ‘at infinity’, are said to be
log-equivalent if

logb(s) ∼ logc(s), s→∞.

Proposition 2

Let b ∈ Sd and let h be the corresponding function. Let c :R→R+ be
a bounded tail-decreasing and tail-log-convex density, such that

lim
s→∞

c(s ± h(s))
c(s)

= 1.

Suppose that b and c are log-equivalent. Let also, for some
α ∈ (0,1), bα ∈ L1(R+, s

d−1 ds). Then c ∈ Sd .

Typical application: c(s) = p(s)b(s), s ∈R+ with logp = o(logb).
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(New) examples of sub-exponential densities

Let b :R→R+ be a bounded tail-decreasing and tail-log-convex
density, such that, for some C > 0, ν,µ ∈R, the function Cb(s) has
either of the following asymptotics as s→∞

• (logs)µs−(d+δ),

• (logs)µsν exp
(
−D(logs)q

)
,

• (logs)µsν exp
(
−sα

)
,

• (logs)µsν exp
(
− s
(logs)q

)
,

where D,δ > 0, q > 1, α ∈ (0,1). Then b ∈ Sd , d ≥ 1.
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density, such that, for some C > 0, ν,µ ∈R, the function Cb(s) has
either of the following asymptotics as s→∞

• (logs)µs−(d+δ), h(s) = sβ , β ∈
(

1
d+δ ,1

)
;

• (logs)µsν exp
(
−D(logs)q

)
, h(s) = s

1
q ;

• (logs)µsν exp
(
−sα

)
, h(s) = (logs)

2
α < sβ ;

• (logs)µsν exp
(
− s
(logs)q

)
, h(s) = (logs)β , β ∈ (1,q),
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Reason 2 for the sub-class

Proposition 3

Let b ∈ Sd and, for some α0 ∈ (0,1), bα0 ∈ L1(R+, s
d−1 ds). Then there

exists α1 ∈ (α0,1), such that, for all α ∈ [α1,1],

bα ∈ Sd .
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Kesten-type bound on R
d



Challenge

• The multi-dimensional version of the constructions above is
much more non-trivial.

• Currently, there exist at least three different definitions of
sub-exponential distributions on R

d for d > 1:
Cline/Resnick’1992, Omey’2006, Samorodnitsky/Sun’2016.

• The variety is mainly related to different possibilities to describe
the zones in R

d where an analogue of the equivalence F ∗F ∼ 2F
takes place.

• Any results about sub-exponential densities in R
d , d > 1, seem to

be absent at all.
• Note that properties of the distribution tails and the integrated

tails of the corresponding densities are not related in the
multi-dimensional case, since, for a probability density a on R

d ,

1−
∫ x1

−∞
. . .

∫ xd

−∞
a(y)dy ,

∫ ∞
x1

. . .

∫ ∞
xd

a(y)dy,

unless d = 1.
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Explanation

• Note also that if, e.g. a is radially symmetric, i.e. a(x) = b(|x|),
x ∈Rd (here |x| denotes the Euclidean norm on R

d ) and b, being
normalized, is a sub-exponential density on R+, then

(a ∗ a)(x) :=
∫
R
d
a(x − y)a(y)dy = c(|x|), x ∈Rd ,

for some c :R+→R+, i.e. a ∗ a is also radially symmetric,
however, asymptotic behaviors of b and c at∞ are hardly to be
compared.

• Leaving this problem as on open, we concentrate on an
analogue of Kesten’s bound in the multi-dimensional case.

Let use reduce Sd , d > 1 a bit more. Namely, let S̃d be the same Sd for
d = 1, and S̃d consists of all functions b ∈ Sd , such that, either

b(s) =
M

(1 + s)d+δ
, s ∈R+, for some M,d > 0,

or
lim
s→∞

b(s)sν = 0, for all ν ≥ 1.
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d ) and b, being
normalized, is a sub-exponential density on R+, then

(a ∗ a)(x) :=
∫
R
d
a(x − y)a(y)dy = c(|x|), x ∈Rd ,

for some c :R+→R+, i.e. a ∗ a is also radially symmetric,
however, asymptotic behaviors of b and c at∞ are hardly to be
compared.

• Leaving this problem as on open, we concentrate on an
analogue of Kesten’s bound in the multi-dimensional case.

Let use reduce Sd , d > 1 a bit more. Namely, let S̃d be the same Sd for
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An analogue of Kesten’s bound on R
d

Theorem 3

1. Let a(x) = b(|x|), x ∈Rd for some b ∈ S̃d , d ≥ 1. Then there exists
α0 ∈ (0,1), such that, for any δ ∈ (0,1) and α ∈ (α0,1), there exist
cδ,α > 0 and sδ,α > 0, such that

a∗n(x) ≤ cδ,α(1 + δ)na(x)α , |x| ≥ sδ,α , n ∈N.

2. Let a(x) ≤ c(|x|), x ∈Rd , such that logc(s) ∼ logb(s), s→∞ for
some b ∈ S̃d , d ≥ 1. Then there exists α0 ∈ (0,1), such that, for
any δ ∈ (0,1) and α ∈ (α0,1), there exist cδ,α > 0 and sδ,α > 0, such
that

a∗n(x) ≤ cδ,α(1 + δ)nb(|x|)α , |x| ≥ sδ,α , n ∈N.
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Application to the non-local heat equation in R
d

Consider now the non-local heat equation in R
d

∂
∂t
u(x, t) = κ

∫
R
d
a(x − y)

(
u(y, t)−u(x, t)

)
dy, x ∈Rd ,

where κ > 0 and 0 ≤ a ∈ L1(Rd)∩L∞(Rd) with
∫
R
d a(x)dx = 1. Let

u(x,0) = u0(x), x ∈Rd , where 0 ≤ u0 ∈ L∞(Rd).

Then, again,

u(x, t) = e−κtu0(x) + e
−κt

(
φ
κ
(t) ∗u0

)
(x),

where

φ
κ
(x, t) :=

∞∑
n=1

κ
ntn

n!
a∗n(x), x ∈Rd , t ≥ 0.

Then, under the conditions of Theorem 3,

φ
κ
(x, t) ≤ cδ,α

(
eκt(1+δ) − 1

)
b(|x|)α , |x| > sδ,α , t > 0

for each α < 1 close enough to 1.
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