TCC Course
Operator semigroups in Banach spaces and their applications
This course is a part of the programme organised by the Taught Course Centre.
Outline:
Preliminaries
Cauchy functional equation in finite and infinite dimensions
Uniformly continuous semigroups in Banach spaces
Examples of semigroups
Strongly continuous semigroups in Banach spaces
Properties
Examples
Generators and resolvents
Hille–Yosida and Lummer–Phillips theorems
Cauchy problem
Well-posedness
Mild solutions
Special classes of semigroups and regularity of solutions
Perturbation and approximation of semigroups
Bounded perturbations
Perturbations in special classes of semigroups
Trotter–Kato–Neveu–Sova–Kurtz approximation (convergence) theorems
Applications
Stability and asymptotic of semigroups
Outline of the theory
Applications
Literature:
Engel, Klaus-Jochen; Nagel, Rainer. One-parameter semigroups for linear evolution equations. Grad. Texts in Math., 194. Springer-Verlag, New York, 2000. xxii+586 pp. ISBN:0-387-98463-1.
Pazy, Amnon. Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci., 44. Springer-Verlag, New York, 1983. viii+279 pp. ISBN:0-387-90845-5.
Bobrowski, Adam. Convergence of one-parameter operator semigroups. In models of mathematical biology and elsewhere. New Math. Monogr., 30. Cambridge University Press, Cambridge, 2016. xiv+438 pp. ISBN:978-1-107-13743-1.
Arendt, Wolfgang; Batty, Charles J. K.; Hieber, Matthias; Neubrander, Frank. Vector-valued Laplace transforms and Cauchy problems. Second edition. Monogr. Math., 96. Birkhäuser/Springer Basel AG, Basel, 2011. xii+539 pp. ISBN:978-3-0348-0086-0.